Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 264(Pt 2): 130842, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484820

RESUMO

Bombyx mori nucleopolyhedrovirus (BmNPV) is a pathogen that causes significant losses to the silkworm industry. Numerous antiviral genes and proteins have been identified by studying silkworm resistance to BmNPV. However, the molecular mechanism of silkworm resistance to BmNPV is unclear. We analyzed the differences between the susceptible strain 871 and a near-isogenic resistant strain 871C. The survival of strain 871C was significantly greater than that of 871 after oral and subcutaneous exposure to BmNPV. Strain 871C exhibited a nearly 10,000-fold higher LD50 for BmNPV compared to 871. BmNPV proliferation was significantly inhibited in all tested tissues of strain 871C using HE strain and fluorescence analysis. Strain 871C exhibited cellular resistance to BmNPV rather than peritrophic membrane or serum resistance. Strain 871C suppressed the expression of the viral early gene Bm60. This led to the inhibition of BmNPV DNA replication and late structural gene transcription based on the cascade regulation of baculovirus gene expression. Bm60 could also interact with the viral DNA binding protein and alkaline nuclease, as well as host proteins Methylcrotonoyl-CoA carboxylase subunit alpha, mucin-2-like protein, and 30 K-8. Overexpression of 30 K-8 significantly inhibited BmNPV proliferation. These results increase understanding of the molecular mechanism behind silkworm resistance to BmNPV and suggest targets for the breeding of resistant silkworm strains and the controlling pest of Lepidoptera.


Assuntos
Bombyx , Nucleopoliedrovírus , Animais , Bombyx/metabolismo , Nucleopoliedrovírus/fisiologia , Genes Virais , Proliferação de Células , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
2.
Pestic Biochem Physiol ; 191: 105380, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36963947

RESUMO

Apoptosis, as an important part of the immune response, is one of the core events in the host-virus interaction. Studies have shown that long non-coding RNAs (lncRNAs) play important roles in the process of cell apoptosis and pathophysiology. To investigate the apoptosis-related lncRNAs involved in Bombyx mori nucleopolyhedrovirus (BmNPV) infecting silkworms, transcriptome sequencing was conducted based on silkworm cells infected with BmNPV before and after B. mori inhibitor of apoptosis (Bmiap) gene knockout. A total of 23 differentially expressed lncRNAs were identified as being associated with the mitochondrial apoptosis pathway. Moreover, we demonstrated that B. mori LINC5438 has the function of inhibiting apoptosis in silkworm cells. Overexpression of LINC5438 promoted the proliferation of BmNPV, while interference with LINC5438 inhibited its proliferation, indicating that LINC5438 plays an important role in BmNPV infection. Our results also showed that LINC5438 can regulate the expression of Bmiap, BmDronc, BmICE, and its predicted target gene BmAIF, suggesting that LINC5438 may function through the mitochondrial pathway. These findings provide important insights into the mechanisms of virus-host interaction and the applications of baculoviruses as biological insecticides.


Assuntos
Bombyx , RNA Longo não Codificante , Animais , Bombyx/metabolismo , RNA Longo não Codificante/genética , Apoptose , Proliferação de Células , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo
3.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142194

RESUMO

The immediate early protein 1 (IE1) acts as a transcriptional activator and is essential for viral gene transcription and viral DNA replication. However, the key regulatory domains of IE1 remain poorly understood. Here, we analyzed the sequence characteristics of Bombyx mori nucleopolyhedrovirus (BmNPV) IE1 and identified the key functional domains of BmNPV IE1 by stepwise truncation. Our results showed that BmNPV IE1 was highly similar to Autographa californica nucleopolyhedrovirus (AcMNPV) IE1, but was less conserved with IE1 of other baculoviruses, the C-terminus of IE1 was more conserved than the N-terminus, and BmNPV IE1 was also necessary for BmNPV proliferation. Moreover, we found that IE1158-208 was a major nuclear localization element, and IE11-157 and IE1539-559 were minor nuclear localization elements, but the combination of these two minor elements was equally sufficient to fully mediate the nuclear entry of IE1. Meanwhile, IE11-258, IE1560-584, and the association of amino acids 258 and 259 were indispensable for the transactivation activity of BmNPV IE1. These results systematically resolve the functional domains of BmNPV IE1, which contribute to the understanding of the mechanism of baculovirus infection and provide a possibility to synthesize a small molecule IE1-truncated mutant as an agonist or antagonist.


Assuntos
Bombyx , Replicação do DNA , Aminoácidos/metabolismo , Animais , Bombyx/metabolismo , DNA Viral , Regulação Viral da Expressão Gênica , Proteínas de Insetos/genética , Nucleopoliedrovírus , Transativadores/metabolismo , Replicação Viral
4.
Insect Sci ; 29(4): 1006-1016, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34913261

RESUMO

The E2F family of transcription factors is crucial for cell cycle progression and cell fate decisions. Although E2Fs have been widely studied in mammals, there have been few studies performed in insects. Here, we determined the function of E2F4 in the silkworm, Bombyx mori. We demonstrate that E2F proteins are highly conserved among species from lower animals to higher mammals. Overexpression of the BmE2F4 gene led to cell cycle arrest in the G1 phase, whereas interfering with the BmE2F4 mRNA led to accumulation of cells in the S phase. These results indicate that BmE2F4 is important in cell cycle regulation. We also demonstrate that the BmE2F4 gene is involved in DNA replication of BmN-SWU1 cells and DNA synthesis in the silk gland. Furthermore, we identified a protein called Bm14-3-3ζ that can interact with BmE2F4 and allow it to localize in the nucleus. Overexpression of the Bm14-3-3ζ gene led to cell cycle arrest in the G1 phase, while knocking down the gene increased the proportion of cells in S phase. These findings provide important insights into the function of E2F transcription factors and increase our understanding of their involvement in cell cycle regulation.


Assuntos
Bombyx , Animais , Bombyx/metabolismo , Ciclo Celular , Replicação do DNA , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Mamíferos/metabolismo , Fatores de Transcrição/genética
5.
Insects ; 12(12)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34940186

RESUMO

Understanding virus-host interaction is very important for delineating the mechanism involved in viral replication and host resistance. Baculovirus, an insect virus, can cause S or G2/M phase arrest in insect cells. However, the roles and mechanism of Baculovirus-mediated S or G2/M phase arrest are not fully understood. Our results, obtained using flow cytometry (FCM), tubulin-labeling, BrdU-labeling, and CellTiter 96® AQueous One Solution Cell Proliferation Assay (MTS), showed that Bombyx mori nucleopolyhedrovirus (BmNPV) induced G2/M phase arrest and inhibited cellular DNA replication as well as cell proliferation in BmN-SWU1 cells. We found that BmNPV induced G2/M arrest to support its replication and proliferation by reducing the expression of BmCDK1 and BmCyclin B. Co-immunoprecipitation assays confirmed that BmNPV IAP1 interacted with BmCDK1. BmNPV iap1 was involved in the process of BmNPV-induced G2/M arrest by reducing the content of BmCDK1. Taken together, our results improve the understanding of the virus-host interaction network, and provide a potential target gene that connects apoptosis and the cell cycle.

6.
Pestic Biochem Physiol ; 178: 104923, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34446199

RESUMO

Cell division cycle protein 37 (Cdc37) is a molecular chaperone that actively participates in many intracellular physiological and biochemical processes as well as pathogen infection. However, the function of Cdc37 in silkworm cells under Bombyx mori nucleopolyhedrovirus (BmNPV) infection is unknown. We cloned and identified BmCdc37, a Cdc37 gene from B. mori, which is highly conserved among other species. After BmNPV infection, the expression level of the BmCdc37 gene was up-regulated and showed an expression pattern similar to the BmHsp90 gene, which relies on Cdc37 to stabilize and activate specific protein kinases. The immunofluorescence, bimolecular fluorescence complementation (BiFC), and co-immunoprecipitation (Co-IP) assays all indicated that BmCdc37 interacts with BmHsp90 in silkworm cells. Both BmCdc37 and BmHsp90 promote the reproduction of BmNPV. Co-expression of BmCdc37 and BmHsp90 was better at promoting virus proliferation than overexpression alone. These findings all indicate that BmCdc37 plays an active role in the proliferation of BmNPV.


Assuntos
Bombyx , Animais , Bombyx/genética , Proteínas de Ciclo Celular/genética , Proliferação de Células , Interações Hospedeiro-Patógeno , Proteínas de Insetos/genética , Nucleopoliedrovírus
7.
Int J Mol Sci ; 22(11)2021 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-34070691

RESUMO

The trachea of insects is a tubular epithelia tissue that transports oxygen and other gases. It serves as a useful model for the studying of the cellular and molecular events involved in epithelial tube formation. Almost all of the extracellular matrix can be degraded by Matrix metalloproteinases (MMPs), which is closely related to the processes of development and regeneration. The regulation of trachea by MMPs is roughly known in previous studies, but the detailed regulation mechanism and involved gene function are not fully explored. In this article, we found MMP1 expressed highly during tracheal remodeling, and knocked out it makes the tracheal branch number reduced in Bombyx mori. In trachea of transgenic BmMMP1-KO silkworm, the space expanding of taenidium and epidermal cells and the structure of apical membrane were abnormal. To explore the underlying mechanism, we detected that DE-cadherin and Integrin ß1 were accumulated in trachea of transgenic BmMMP1-KO silkworm by immunohistochemistry. Moreover, 5-Bromo-2'-Deoxyuridine (BrdU) labeling showed that knockout of BmMMP1 in silkworm inhibited tracheal cell proliferation, and BmMMP1 also regulated the proliferation and migration of BmNS cells. All of the results demonstrated that BmMMP1 regulates the development of the tracheal tissue by expanding the space of tracheal cuticles and increases the number of tracheal branches by degrading DE-cadherin and Integrin ß1.


Assuntos
Bombyx , Proteínas de Insetos , Metaloproteinase 1 da Matriz , Organogênese , Traqueia/enzimologia , Animais , Bombyx/enzimologia , Bombyx/genética , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Metaloproteinase 1 da Matriz/genética , Metaloproteinase 1 da Matriz/metabolismo
8.
Pestic Biochem Physiol ; 174: 104809, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33838710

RESUMO

Energy metabolism is important for the proliferation of microsporidia in infected host cells, but there is limited information on the host response. The energy metabolism response of silkworm (Bombyx mori) to microsporidia may help manage Nosema bombycis infections. We analyzed differentially expressed genes in the B.mori midgut transcriptome at two significant time points of microsporidia infection. A total of 1448 genes were up-regulated, while 315 genes were down-regulated. A high proportion of genes were involved in the phosphatidylinositol signaling system, protein processing in the endoplasmic reticulum, and glycerolipid metabolism at 48 h post infection (h p.i.), and a large number of genes were involved in the TCA cycle and protein processing at 120 h p.i. These results showed that the early stages of microsporidia infection affected the basic metabolism and biosynthesis processes of the silkworm. Knockout of Bm_nscaf2860_46 (Bombyx mori isocitrate dehydrogenase, BmIDH) and Bm_nscaf3027_062 (Bombyx mori hexokinase, BmHXK) reduced the production of ATP and inhibited microsporidia proliferation. Host fatty acid degradation, glycerol metabolism, glycolysis pathway, and TCA cycle response to microsporidia infection were also analyzed, and their importance to microsporidia proliferation was verified. These results increase our understanding of the molecular mechanisms involved in N. bombycis infection and provide new insights for research on microsporidia control. IMPORTANCE: Nosema bombycis can be vertically transmitted in silkworm eggs. The traditional prevention and control strategies for microsporidia are difficult and time-consuming, and this is a problem in silkworm culture. Research has mainly focused on host gene functions related to microsporidia infection and host immune responses after microsporidia infection. Little is known about the metabolic changes occurring in the host after infection. Understanding the metabolic changes in the silkworm host could aid in the recognition of host genes important for microsporidia infection and growth. We analyzed host metabolic changes and the main participating pathways at two time points after microsporidia infection and screened the microsporidia-dependent host energy metabolism genes BmIDH and BmHXK. The results revealed genes that are important for the proliferation of Nosema bombycis. These results illustrate how microsporidia hijack the host genome for their growth and reproduction.


Assuntos
Bombyx , Nosema , Animais , Bombyx/genética , Metabolismo Energético/genética , Perfilação da Expressão Gênica , Nosema/genética
9.
Int J Biol Macromol ; 166: 529-537, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33130268

RESUMO

Apoptosis is a cellular defense mechanism used for the elimination of host cells infected by viruses. Viruses have evolved corresponding inhibitors of apoptosis genes to promote their replication. Anti-apoptosis-related genes, involved in baculovirus proliferation, have been proposed but it is unclear whether these genes can be manipulated in gene therapy. We constructed a transgenic silkworm, using the CRISPR/Cas9 system to knock out the BmNPV inhibitor of apoptosis 2 (iap2). The sequencing results showed that all the sequences could edit the target site of BmNPV iap2 gene. There were no differences in economic traits and growth tests between the BmNPV iap2 knockout strain transgenic silkworm lines and the control groups. However, the mortality rate was significantly reduced, the median lethal dose (LD50) was about 100 times higher than the control group, and the onset time was prolonged by 1-2 days after knocking out BmNPV iap2. In addition, the expression levels of apoptotic-related genes Bmiap2, BmICE and BmDreed were significantly affected and the activity of caspase 9 was increased after BmNPV iap2 being edited in transgenic silkworm. These results demonstrated that gene editing BmNPV iap2 could significantly inhibit BmNPV replication and proliferation. This approach provides a new strategy for antiviral research.


Assuntos
Antivirais/metabolismo , Bombyx/virologia , Edição de Genes , Nucleopoliedrovírus/genética , Proteínas Virais/genética , Animais , Animais Geneticamente Modificados , Apoptose/genética , Sequência de Bases , Interações Hospedeiro-Patógeno/genética , Nucleopoliedrovírus/fisiologia , Replicação Viral
10.
Int J Biol Macromol ; 164: 3771-3779, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32891645

RESUMO

DNA methylation is an important epigenetic modification and has been shown to be involved in the response to abiotic stress. However, there are few studies on DNA methylation in insect response to environmental signals. In this study, we conducted a comprehensive comparative analysis of DNA methylation profiles between two silkworm strains with significantly different resistance to heat and humidity by whole-genome bisulfite sequencing (WGBS). We identified, in total, 2934 differentially methylated regions (DMRs) between RT_48h (resistant strain with high-temperature/humidity treatment for 48 h) and ST_48h (sensitive strain with high-temperature/humidity treatment for 48 h) under cytosine context (CG), which corresponded to 1230 DMR-related genes (DMGs), and the DMRs were primarily located in the gene body (exon and intron) region. Gene ontology (GO) and KEGG analysis showed that these DMGs were most significantly enriched in binding, cellular metabolic process, and RNA transport pathways. Moreover, 10 DMGs have been revealed to be involved in the heat-humidity stress response in the silkworm. The results of this study indicated that DNA methylation plays crucial roles in silkworm response to environmental stressors and provides important clues to identify key resistance genes in silkworm under high-temperature/humidity stress response.


Assuntos
Bombyx/genética , Metilação de DNA/genética , Epigênese Genética/genética , Estresse Fisiológico/genética , Animais , Bombyx/fisiologia , Genoma de Inseto/genética , Resposta ao Choque Térmico/genética , Temperatura Alta/efeitos adversos , Umidade/efeitos adversos , Sulfitos/metabolismo , Sequenciamento Completo do Genoma
11.
Biotechnol Lett ; 42(11): 2111-2122, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32533375

RESUMO

OBJECTIVE: Rapid and convenient detection of protein-protein interactions (PPIs) is of great significance for understanding function of protein. RESULTS: For efficiently detecting PPIs, we used the changes of proteins fluorescence localization to design a novel system, fluorescence translocation co-localization (FTCL), based on nuclear localization signal (NLS) in living cells. Depending on the original state of protein localization (both in the cytoplasm, both in the nucleus, one in the nucleus and another in the cytoplasm), two target proteins can be partitioned into the cytoplasm and nucleus by adding a NLS or mutating an existing NLS. Three independent results display that the changes of protein fluorescence co-localization were observed following co-expression of the two target proteins. At the same time, we verified the accuracy of fluorescence co-localization by co-immunoprecipitation. CONCLUSIONS: There FTCL system provided a novel detection method for PPIs, regardless of protein localization in the nucleus or cytoplasm. More importantly, this study provides a new strategy for future protein interaction studies through organelle localization (such as mitochondria, Golgi and cytomembrane, etc.).


Assuntos
Bombyx/metabolismo , Proteínas de Insetos/metabolismo , Proteínas Luminescentes/genética , Sinais de Localização Nuclear/metabolismo , Animais , Linhagem Celular , Núcleo Celular/química , Citoplasma/química , Feminino , Imunoprecipitação , Proteínas de Insetos/química , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Plasmídeos/genética , Mapas de Interação de Proteínas , Transporte Proteico
12.
Insect Sci ; 27(4): 687-696, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31070299

RESUMO

Ser/Thr protein phosphatase 2A (PP2A) is one of the type 2 protein phosphatases, which is required for many intracellular physiological processes and pathogen infection. However, the function of PP2A is unclear in silkworm, Bombyx mori. Here, we cloned and identified BmPP2A, a PP2A gene from B. mori, which has two HEAT domains and a high similarity to PP2A from other organisms. Our results showed that BmPP2A is localized in the cytoplasm and highly expressed in silkworm epidermis and midgut, and that Bombyx mori nucleopolyhedrovirus (BmNPV) infection induces down-regulation of BmPP2A expression. Furthermore, up-regulation of BmPP2A via overexpression significantly inhibited BmNPV multiplication. In contrast, down-regulation of BmPP2A via RNA interference and okadaic acid (a PP2A inhibitor) treatment allowed robust BmNPV replication. This is the first report of PP2A having an antiviral effect in silkworm and provides insights into the function of BmPP2A, a potential anti-BmNPV mechanism, and a possible target for the breeding of silkworm-resistant strains.


Assuntos
Bombyx/genética , Proteínas de Insetos/genética , Nucleopoliedrovírus/fisiologia , Proteína Fosfatase 2/genética , Sequência de Aminoácidos , Animais , Antivirais/metabolismo , Bombyx/crescimento & desenvolvimento , Bombyx/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno , Proteínas de Insetos/metabolismo , Larva/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Proteína Fosfatase 2/metabolismo , Regulação para Cima
13.
Insect Sci ; 27(3): 463-474, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30697933

RESUMO

As an important insect immune response, apoptosis plays a critical role in the interaction between baculoviruses and insect hosts. Previous reports have identified inhibitor of apoptosis (IAP) proteins in both insects and baculoviruses, but the relationship between these proteins is still not clearly understood. Here, we found that insect IAP proteins were clustered with baculovirus IAP3, suggesting that the baculovirus iap3 gene might be derived from the Lepidoptera or Diptera. We demonstrated that Bombyx mori inhibitor of apoptosis (Bmiap) gene had an inhibitory effect on apoptosis in silkworm cells. Further analysis of the effects of Bmiap genes on the proliferation of B. mori nucleopolyhedrovirus (BmNPV) showed that both the Bmiap and BmNPV iap genes increased BmNPV proliferation after BmNPV infected silkworm cells. Our results also indicated that BmNPV IAP1 and IAP2 directly interacted with BmIAP in silkworm cells, implying that the Bmiap gene might be hijacked by BmNPV iap genes during BmNPV infection. Taken together, our results provide important insights into the functional relationships of iap genes, and improve our knowledge of apoptosis in baculoviruses and insect hosts.


Assuntos
Proteínas Inibidoras de Apoptose/genética , Nucleopoliedrovírus , Proteínas Virais/genética , Animais , Apoptose/genética , Evolução Biológica , Bombyx/metabolismo , Bombyx/virologia , Linhagem Celular , Interações entre Hospedeiro e Microrganismos , Proteínas Inibidoras de Apoptose/metabolismo , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Nucleopoliedrovírus/crescimento & desenvolvimento , Nucleopoliedrovírus/metabolismo , Filogenia , Proteínas Virais/metabolismo
14.
Pestic Biochem Physiol ; 157: 143-151, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31153462

RESUMO

Autophagy is a cell adaptive response that involves the process of microbial infections. Our previous study has indicated that Bombyx mori nucleopolyhedrovirus (BmNPV) infection triggers the complete autophagic process in BmN-SWU1 cells, which is beneficial to the viral infection. Autophagy-related (ATG) protein ATG13, as part of the ULK complex (a serine-threonine kinase complex composed of ULK1, ULK2, ATG13, ATG101, and FIP200), is the most upstream component of the autophagy pathway, and how it affects virus infections will improve our understanding of the interaction between the virus and the host. This study has determined that the overexpression of the BmAtg13 gene promotes the expression of viral genes and increases viral production in BmN-SWU1 cells, whereas knocking down the BmAtg13 gene suppresses BmNPV replication. Moreover, the BmAtg13 overexpression transgenic line contributed to viral replication and increased mortality rate of BmNPV infection. In contrast, the BmAtg13 knockout transgenic line reduced viral replication 96 h post-infection. Furthermore, BmATG13 directly interacted with viral protein BRO-B, forming a protein complex. Taken together, the findings of this study suggest that BmATG13 may be utilized by the BRO-B protein to promote BmNPV replication and proliferation, which, in turn, provides important insights into the mechanism that autophagy influences viral infection.


Assuntos
Proteínas de Insetos/metabolismo , Nucleopoliedrovírus/patogenicidade , Replicação Viral/fisiologia , Animais , Proliferação de Células/genética , Proliferação de Células/fisiologia , Proteínas de Insetos/genética , Ligação Proteica , Proteínas Virais/genética , Proteínas Virais/metabolismo , Replicação Viral/genética
15.
Cell Cycle ; 18(13): 1498-1512, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31145019

RESUMO

Geminin is a master regulator of cell-cycle progression that ensures the timely onset of DNA replication and prevents re-replication in vertebrates and invertebrates. Previously, we identified two Geminin genes, BmGeminin1 and BmGeminn2, in the silkworm Bombyx mori, and we found that RNA interference of BmGeminin1 led to re-replication. However, the function of BmGeminin2 remains poorly understood. In this study, we found that knockdown of BmGeminin2 can improve cell proliferation, and upregulated G2/M-associated gene-cyclinB/CDK1 expression. Then, we performed yeast two-hybrid screening to identify interacting proteins. Our results yielded 23 interacting proteins, which are involved in DNA replication, chromosome stabilization, embryonic development, energy, defense, protein processing, or structural protein. Here, we focused on BmRRS1, a chromosome congression-related protein that is closely related to cell cycle G2/M progression. The interaction between BmGeminin2 and BmRRS1 was confirmed by immunofluorescence and immunoprecipitation. Analysis of its expression profile showed that BmRRS1 was related to BmGeminin2. In addition, BmGeminin2 overexpression downregulated the BmRRS1 transcript. Knockdown of BmGeminin2 led to upregulation of the BmRRS1 transcript. Furthermore, overexpression of BmRRS1 can upregulate G2/M-associated gene-cyclinB/CDK1 expression, and improved cell proliferation, consistent with the effects of BmGeminin2 knockout. In addition, BmRRS1 RNA interference can eliminate the impact of BmGem2 knockout on cell proliferation, the ratio of cell cycle stage and the expression of cyclinB/CDK1. These data suggested that the cell proliferation advantage of BmGeminin2 knockout was closely related to BmRRS1. Our findings provide insight into the functions of Geminin and the mechanisms underlying the regulation of the cell cycle in the silkworm.


Assuntos
Bombyx/genética , Proliferação de Células/genética , Proteínas de Insetos/genética , Animais , Linhagem Celular , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Expressão Gênica/genética , Interferência de RNA/fisiologia , Regulação para Cima/genética
16.
Pestic Biochem Physiol ; 154: 88-96, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30765061

RESUMO

Melanization mediated by the prophenoloxidase-activating system (proPO) is an important immune response in invertebrates. However, the role of melanization on viral infection has not been wildly revealed in Bombyx mori (B. mori), silkworm. Here, we investigated the extent of melanization of susceptible (871) and resistant (near-isogenic line 871C) B. mori strains. The result showed that the extent of melanization was significantly higher in the susceptible strain than in the resistant strain. A majority of Serpins were up-regulated in the resistant strain through iTRAQ-based quantitative proteomics, comparing with susceptible strain. Our data further identified that Serpin-5, Serpin-9 and Serpin-19 reduced PO activity, indicating that the menlanization pathway was inhibited in the resistant strain. Moreover, our results indicated that the hemolymph of 871 reduced viral infection in the presence of PTU, indicating that melanization of 871 strain hemolymph blocked viral infection. However, viral infection was significantly suppressed in the hemolymph of 871C strain regardless of the presence of PTU or not, which implied that the resistant strain inhibited viral infection independent of the melanization pathway. Taken together, our findings indicated that the melanization pathway was inhibited in resistant strain. These results expend the analysis of melanization pathway in insects and provide insights into understanding the antiviral mechanism.


Assuntos
Baculoviridae/fisiologia , Bombyx/fisiologia , Bombyx/virologia , Resistência à Doença/fisiologia , Larva/fisiologia , Larva/virologia , Animais , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Hemolinfa/metabolismo , Hemolinfa/virologia , Interações Hospedeiro-Patógeno , Proteínas de Insetos/metabolismo , Melaninas/metabolismo , Serpinas/metabolismo
17.
J Biol Eng ; 12: 30, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30534200

RESUMO

BACKGROUND: Silkworm genetic engineering is widely used in gene function, silk engineering and disease-resistant engineering in most of Asia. Some of the earliest promoter elements are used to control the development of silkworm transgenic expression and gene therapy. However, the low expression and specificity of natural promoters limit the applications of genetic engineering. To construct a highly efficient synthetic inducible promoter in the Bombyx mori (Lepidoptera), we analyzed the regulatory elements and functional regions of the B. mori nucleopolyhedrovirus 39 K promoter. RESULTS: Truncated mutation analysis of the 39 K promoter showed that the transcriptional regulatory region spanning positions - 573 to - 274 and + 1 to + 62 are essential for virus-inducible promoter activity. Further investigations using the electrophoretic mobility shift assay revealed that the baculovirus IE-1 protein binds to the 39 K promoter at the - 310 to - 355 region, and transcription activates the expression of 39 K promoter assay. Finally, we successfully constructed a synthetic inducible promoter that increased the virus-inducing activity of other promoters using the baculovirus-inducible transcriptional activation region that binds to specific core elements of 39 K (i.e., spanning the region - 310 to - 355). CONCLUSIONS: In summary, we constructed a novel, synthetic, and highly efficient biological tool, namely, a virus-inducible 39 K promoter, which provides endless possibilities for future research on gene function, gene therapy, and pest control in genetic engineering.

18.
J Insect Physiol ; 108: 54-60, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29778904

RESUMO

Lysozymes is a ubiquitous immune effector that is widely distributed in both vertebrates and invertebrates. Previous reports have shown that lysozymes significantly inhibit viral infections in vertebrates. However, the antiviral effects of lysozymes in invertebrates remain unclear. Here, we investigated the role of lysozymes in Bombyx mori (B. mori) response to viral infection by overexpressing B. mori C-lysozyme (BmC-LZM) in larvae and cells. We found that BmC-LZM was up-regulated in cells in response to viral infection. Indeed, the overexpressing of BmC-LZM significantly inhibited viral replication in cells during late-stage infection. However, this effect was reversed by BmC-LZM mRNA. BmC-LZM was successfully overexpressed in B. mori strain 871 using Baculovirus Expression Vector System (BEVS). This overexpression markedly reduced viral proliferation and increased larval survival percentage. Thus, BmC-LZM inhibited viral replication both in vivo and in vitro, indicating that BmC-LZM is involved in the insect immune response to viral infection. Our results provide a basis for further applications of lysozymes.


Assuntos
Bombyx/imunologia , Bombyx/virologia , Muramidase/fisiologia , Nucleopoliedrovírus/imunologia , Animais , Larva , Replicação Viral
19.
Sci Rep ; 7: 46187, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393927

RESUMO

Research on molecular mechanisms that viruses use to regulate the host apparatus is important in virus infection control and antiviral therapy exploration. Our previous research showed that the Bombyx mori nucleopolyhedrovirus (BmNPV) LEF-11 localized to dense regions of the cell nucleus and is required for viral DNA replication. Herein, we examined the mechanism of LEF-11 on BmNPV multiplication and demonstrated that baculovirus LEF-11 interacts with Bombyx mori ATAD3A and HSPD1 (HSP60) protein. Furthermore, we showed that LEF-11 has the ability to induce and up-regulate the expression of ATAD3A and HSPD1, phenomena that were both reversed upon knockdown of lef-11. Our findings showed that ATAD3A and HSPD1 were necessary and contributed to BmNPV multiplication in Bombyx mori cells. Moreover, ATAD3A was found to directly interact with HSPD1. Interestingly, ATAD3A was required for the expression of HSPD1, while the knockdown of HSPD1 had no obvious effect on the expression level of ATAD3A. Taken together, the data presented in the current study demonstrated that baculovirus LEF-11 hijacks the host ATPase family members, ATAD3A and HSPD1, efficiently promote the multiplication of the virus. This study furthers our understanding of how baculovirus modulates energy metabolism of the host and provides a new insight into the molecular mechanisms of antiviral research.


Assuntos
Adenosina Trifosfatases/metabolismo , Baculoviridae/metabolismo , Bombyx/virologia , Interações Hospedeiro-Patógeno , Proteínas de Insetos/metabolismo , Replicação Viral/fisiologia , Animais , Linhagem Celular , Imunoprecipitação , Ligação Proteica , Estabilidade Proteica , Espectrometria de Massas em Tandem
20.
Viruses ; 10(1)2017 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-29301200

RESUMO

Bombyx mori nuclear polyhedrosis virus (BmNPV) is an important pathogen of silkworms. Despite extensive studies in recent decades, the interaction between BmNPV and host cells is still not clearly understood. Autophagy is an intrinsic innate immune mechanism and it controls infection autonomously in virus-infected cells. In this study, we found that BmNPV infection could trigger autophagy, as demonstrated by the formation of autophagosomes, fluorescent Autophagy-related gene 8-Green Fluorescent Protein (ATG8-GFP) punctate, and lipidated ATG8. Meanwhile, autophagic flux increased significantly when monitored by the ATG8-GFP-Red Fluorescent Protein (RFP) autophagy tandem sensor and protein degradation of p62. In addition, almost all of the identified autophagy-related genes (Atgs) had been up-regulated post infection in mRNA levels. Then, we screened Atgs with the greatest fold-change during virus infection. Interestingly, all of the screened Atgs positively regulated the expression of virus genes. Further studies showed that Atg7 and Atg9 could contribute to the level of autophagy caused by viral infection. Our results demonstrated that BmNPV induced host cell autophagy to benefit its infection. These results offer insight into the complex interactions between virus and host cell, and viral pathogenesis.


Assuntos
Autofagia/genética , Bombyx/virologia , Interações Hospedeiro-Patógeno , Nucleopoliedrovírus/fisiologia , Animais , Proteínas Relacionadas à Autofagia/genética , Linhagem Celular , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...